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Mixture Models and EM:  Topics 

1.  Intuition 
2.  Equations 
3.  Examples 
4.  Applications 
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Motivation 

¨  What do we do if a distribution is not well-
approximated by a standard parametric model? 
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Mixtures of Gaussians 

¨  Combine simple models  
into a complex model: 

Component 

Mixing coefficient 
K=3 
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Mixtures of Gaussians 
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Mixtures of Gaussians 

¨  Determining parameters   using maximum 
log likelihood 

¨  Solution: use standard, iterative, numeric 
optimization methods or the expectation 
maximization algorithm.  

Log of a sum; no closed form maximum. 

 µ,  σ  and π
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Hidden Variable Interpretation 

¨  Assumptions 

¤   for each training observation xn there is a hidden variable zn. 
¤   zn = 1,…,K represents which Gaussian xn came from 

¨  With this interpretation, we have: 

 
      where 
 
      and 

 p zn = k( ) = πk

     p xn | zn = k( )  N xn;µk , Σk( )
 x

  z = 1   z = 2   z = 3

 z

   
p xn( ) = p xn | zn = k( ) p zn = k( )

k=1

K
∑

    
p xn( ) = πkN xn;µk , Σk( )

k=1

K
∑
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Hidden Variable Interpretation 

 x
  z = 1   z = 2   z = 3

 x
  z = 1   z = 2   z = 3

 z  z

     
p xn | π 1 ,…πK , µ1 ,…µK , Σ1 ,…ΣK( ) = πkN xn;µk , Σk( )

k=1

K
∑ = p zn = k( ) p xn | zn = k( )

k=1

K
∑
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Hidden Variable Interpretation 

OUR GOAL 

THING TO NOTICE �

If we knew the hidden variables zn for the training data it would be easy to 
estimate parameters   – just estimate individual Gaussians separately.�

  

To estimate the parameters θ:
The means µk

The covariances Σk

The weights (mixing coefficients) π k

for all K components of the model.

θ

 x
  z = 1   z = 2   z = 3

 z

     
p xn | π 1 ,…πK , µ1 ,…µK , Σ1 ,…ΣK( ) = πkN xn;µk , Σk( )

k=1

K
∑ = p zn = k( ) p xn | zn = k( )

k=1

K
∑
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 x
  z = 1   z = 2   z = 3

 z

Hidden Variable Interpretation 

THING TO NOTICE #2: �
�

If we knew the parameters     it would very easy to estimate the posterior 
distribution over each hidden variable zn using Bayes’ rule: �

z=1 � z=2� z=3�

p(
z|

x)
�

θ

   

p z = k | x,θ( ) = p x | z = k,θ( )πk

p x | z = k,θ( )πk
k=1

K
∑
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Expectation Maximization 

Chicken and egg problem:   
 

•  could find z1...N  if we knew �
•  could find   if we knew z1...N �

Solution:  Expectation Maximization (EM) algorithm     
 (Dempster, Laird and Rubin 1977) 

EM for Gaussian mixtures can be viewed as alternation between 2 steps: 
  
1. Expectation Step (E-Step) 

  

•  For fixed    find posterior distribution over responsibilities z1...N �
 
2. Maximization Step (M-Step) 
 

•  Now use these posterior probabilities to re-estimate�

θ

θ

θ

θ
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K-Means:  A Poor-Man’s Approximation 

¨  The K-means algorithm is very similar to EM, except 
that  
¤ We assume the mixing coefficients are the same for 

each component. 
¤ We assume each component is isotropic with common 

variance. 
¤ We do not admit any uncertainty about the 

responsibilities at each iteration. 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

15 

K-Means:  A Poor-Man’s Approximation 

¨  K-Means consists of the following steps: 
1.  Randomly select the mean for each component. 
2.  Associate each input with the nearest component 

mean. 
3.  Recompute the means based upon the new 

association. 

¨  Steps 2 and 3 are alternated until convergence. 
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Example 
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Mixture Models and EM:  Topics 

1.  Intuition 
2.  Equations 

3.  Examples 
4.  Applications 
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¨  The responsibility rnk of component k for observation xn is the posterior 
probability that component k generated xn. 

¨  Responsibilities Update Equation: 

¨  Let Nk = effective number of observations explained by component k: 

Responsibilities 

    Responsibility rnk  P zn = k | xn;θ( )

(e)

L = 5

−2 0 2

−2

0

2

   
Nk  rnk

n=1

N
∑

   

Responsibility rnk =
p xn | zn = k;θ( )πk (t)

p xn | zn = k;θ( )πk (t)
k=1

K
∑
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Example:  Mixture of Gaussians 

¨  Differentiating does not allow us to isolate the 
parameters analytically. 

¨  However, it does generate equations that can be 
used for iterative estimation of these parameters by 
EM. 
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Example:  Mixture of Gaussians 

¨  Parameter Update Equations: 

   
µk = 1

Nk
rnkxn

n=1

N
∑

   
Σk = 1

Nk
rnk xn − µk( ) xn − µk( )t

n=1

N
∑

  
πk = 1

N rnk
k=1

N
∑
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Mixture of (Multivariate) Gaussians 

¨  Here we will derive the formula for the mixing 
coefficents πk. 

¨  Textbook Problem 11.2:  Derive the EM formulae 
for the mean μk and covarianceΣk. 
¤  Please do this at home! 
¤  When solving for Σk, recall that:     

   and 
 
d
dA

A = A A− t

 

d
dA

xtAx = xxt
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Initialization 

¨  EM typically takes longer to converge than K-
Means, and the computations are more elaborate. 

¨  It is thus common to use the solution to K-means to 
initialize the parameters for EM. 
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Convergence 

¨  EM is guaranteed to monotonically increase the 
likelihood. 

¨  However, since in general the likelihood is non-
convex, we are not guaranteed to find the globally 
optimal parameters. 



October 24, 2012 

End of Lecture 
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Mixture Models and EM:  Topics 

1.  Intuition 
2.  Equations 
3.  Examples 

4.  Applications 
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Bivariate Gaussian Mixture Example 
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2-Component Bivariate MATLAB Example 
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2-Component Bivariate MATLAB Example 

%update responsibilities�
    for i=1:k �
        p(:,i)=alphas(i).*mvnpdf(x,mu(i,:),squeeze(S(i,:,:))); �
    end�
    p=p./repmat((sum(p,2)),1,k); �
�

%update parameters�
    for i=1:k �
        Nk=sum(p(:,i)); �
        mu(i,:)=p(:,i)'*x/Nk; �
        dev=x-repmat(mu(i,:),N,1); �
        S(i,:,:)=(repmat(p(:,i),1,D).*dev)'*dev/Nk; �
        alphas(i)=Nk/N; �
    end�
�
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Old Faithful Example 
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Face Detection Example: 2 Components 

0.4999 

0.4675 

0.5001 

0.5325 

Face Model 
Parameters 

Non-Face 
Model 

Parameters 

Mean 

Standard 
deviation 

Prior 

Mean 

Standard 
deviation 

Prior 

Each component is still assumed to 
have diagonal covariance. 
 
The face model and non-face 
model have divided the data into 
two clusters.  In each case, these 
clusters have roughly equal 
weights.   
 
The primary thing that these seem 
to have captured is the 
photometric  (luminance) variation.   
 
Note that the standard deviations 
have become smaller than for the 
single Gaussian model as any 
given data point  is likely to be 
close to one mean or the other. 
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Results for MOG 2 Model 
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Performance improves 
relative to a single 
Gaussian model, 
although it is not a 
dramatic improvement. 
 
We have a better 
description of the data 
likelihood. 
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MOG 5 Components 
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Mean 
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MOG 10 Components 

0.0075 0.1425 0.1437 0.0988 0.1038 0.1187 0.1638 0.1175 0.1038 0.0000 

0.1137 0.0688 0.0763 0.0800 0.1338 0.1063 0.1263  0.0900 0.1063 0.0988 
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Performance improves 
slightly more, 
particularly at low false 
alarm rates. 

Results for Mog 10 Model 
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Background Subtraction 

GOAL : (i) Learn background model  (ii) use this to segment regions 
where the background has been occluded  

Test Image Desired Segmentation 
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What if the scene isn’t static? 

Gaussian is no longer a good 
fit to the data. 
 
Not obvious exactly what 
probability model would fit 
better. 
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Background Mixture Model 
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Background Subtraction Example 

6.8 Applications 111

Figure 6.27 Background subtraction. For each pixel we aim to infer a label
y 2 {0, 1} denoting the absence of presence of a foreground object. a) We
learn a class conditional density model Pr(x|y) for the background from
training examples of an empty scene. The foreground model is treated as
uniform. b) For a new image we then compute the posterior distribution
using Bayes rule. c) Posterior probability of being foreground Pr(y = 1|x).





Figure 6.28 Background subtraction in deforming scene. a-b) The foliage is
blowing in the wind. c) This distribution of RGB values at this pixel (red
channel only shown) is now bimodal and not well described by a normal
density function. d) A mixture of Gaussians describes this data well. e) We
can now proceed to classify each pixel from a new scene as foreground or
background. f) Results (after post-processing to remove noise).

The results (figure 6.27) show that individual pixels are sometimes misclassified
due to the overlap between the distributions: if there is an unusual amount of
noise at a background pixel it may be classified as foreground and if the foreground
object is the same colour as the classifier then it can be misclassified as background.
Moreover, shadows are often misclassified as foreground. A simple way to remedy
this is to classify pixels based on the hue alone.


