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MIXTURE MODELS AND EM
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Motivation

7 What do we do if a distribution is not well-
approximated by a standard parametric model?

a) b)
Y, /\
Pr(X|Y=y,)
Y.
? o~ o \
Pr(X|Y=y,)

Pr(X,Y)
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Mixtures of Gaussians

1 Combine simple models  p(z),
info a complex model:

K
pO0) = 3 M (e S)

k=1 ;
Component

Mixing coefficient

K=3
K
Vk :m. >0 Zwkzl
k=1
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Mixtures of Gaussians

Probability & Bayesian Inference

057
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Mixtures of Gaussians

Determining parameters i, o and  using maximum
log likelihood

lnp(X|7T7“'7 ZID{ZWkN an'l’lwzk)}
n=1

Log of a sum; no closed form maximum.

Solution: use standard, iterative, numeric
optimization methods or the expectation
maximization algorithm.
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Hidden Variable Interpretation

p(xn) = gnkN(xn;uk,Zk)

o Assumptions
for each training observation x,, there is a hidden variable z,.

z,=1,...,Krepresents which Gaussian x,, came from

o With this interpretation, we have:

p(xn) = gp(xn |z = k)p(zn = k)

where 3
o

p(zn = k) =T,

and

p(xn |z = k) ~ N(xn;,uk,Zk)

Observed Data x 0 Hidden Variable, z
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Hidden Variable Interpretation

K K
p(xrl I nl,...nK,ul,...,uK,Zl,...ZK) = EnkN(xn;uk,Zk) =
k=1 k=1
0.08 -, 0.08 -,
0.06 0.06
£ 2
5 0.04. 5 0.04.
O O
S S
% 0.02. % 0.02]
0)_, 0)
100 100
Observed Data x 0 Hidden Variable, z Observed Data x 0
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Hidden Variable, z
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Hidden Variable Interpretation

K K
p(xn I nl,...ﬂK,ul,...uK,Zl,...ZK) = Zﬂkl\)(xn;,uk,zk) = p(zn = /<)p(xn |z = k)
k=1 k=1
OUR GOAL 008
To estimate the parameters 6. |
0.06

The means u,
The covariances X,

Probability
(]
(]
N

The weights (mixing coefficients) r, 0.02.
for all K components of the model. 0.
100

z=3
z=2

z=1
Observed Data x 0 Hidden Variable, z

THING TO NOTICE
If we knew the hidden variables z_ for the training data it would be easy to

estimate parameters g - just estimate individual Gaussians separately.
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Hidden Variable Interpretation

THING TO NOTICE #2:

If we knew the parameters 9 it would very easy to estimate the posterior
distribution over each hidden variable z, using Bayes’ rule:

p(x | z = k,9)7tk

p(z:klx,O):

Probability

p(zlx)

z=1 z=2 z=3
Observed Data x 0 Hidden Variable, z
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Expectation Maximization

Chicken and egg problem:

* could find z,  if we knew®
« could find 9 if we knew z, |

Solution: Expectation Maximization (EM) algorithm
(Dempster, Laird and Rubin 1977)

EM for Gaussian mixtures can be viewed as alternation between 2 steps:

1. Expectation Step (E-Step)

* For fixed 6 find posterior distribution over responsibilities z,

2. Maximization Step (M-Step)

* Now use these posterior probabilities to re-estimate 0

| E
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K-Means: A Poor-Man’s Approximation

The K-means algorithm is very similar to EM, except
that

We assume the mixing coefficients are the same for
each component.

We assume each component is isotropic with common
variance.

We do not admit any uncertainty about the
responsibilities at each iteration.
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K-Means: A Poor-Man’s Approximation

K-Means consists of the following steps:
Randomly select the mean for each component.

Associate each input with the nearest component
mean.
Recompute the means based upon the new

association.

Steps 2 and 3 are alternated until convergence.

YORK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Example
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Responsibilities

The responsibility r,, of component k for observation x_ is the posterior
probability that component k generated x

Responsibility r = P(zn =K | xn;G)

Responsibilities Update Equation: 0
. p(x, |z, = ki6)m,(t)
Responsibility r = — ) :
ZP(X z =/<;9)7Z’k(f) 2 0 ) 2
k=1

Let N, = effective number of observations explained by component k:
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Example: Mixture of Gaussians

Inp(X|m, pu, X) = Z In {Z TN (X | Ek)}

Differentiating does not allow us to isolate the
parameters analytically.

However, it does generate equations that can be

used for iterative estimation of these parameters by

EM.

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

J. Elder



Example: Mixture of Gaussians

-1 Parameter Update Equations:

J. Elder



Mixture of (Multivariate) Gaussians

N
Inp(X|m, 1, $) = > In

n=1

K
{ TN (X | o Ek)}
k=1

1 Here we will derive the formula for the mixing
coefficents .

1 Textbook Problem 11.2: Derive the EM formulae
for the mean L, and covariance 2 ,.

Please do this at home!

When solving for 2, recall that:

JLA‘A|:|A‘A4 and (;iAxtAx:xxt
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Initialization

EM typically takes longer to converge than K-
Means, and the computations are more elaborate.

It is thus common to use the solution to K-means to
initialize the parameters for EM.
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Convergence

EM is guaranteed to monotonically increase the
likelihood.

However, since in general the likelihood is non-
convex, we are not guaranteed to find the globally
optimal parameters.

IVERSITE
IVERSITY
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- End of Lecture

October 24, 2012
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Bivariate Gaussian Mixture Example
T

05¢

057 057 057

[ ] [ ]
3 0
07 samples from p(x J. 1O)] 01 samples from p(x. | ©) | 0 IResponsibilities P J. 1% ;0(t)
P P{X.. J, P P\X, P k K
0 0.5 1 0 0.5 1 0 0.5 1
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2-Component Bivariate MATLAB Example

CSE 2011Z 2010W
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2-Component Bivariate MATLAB Example

Z%update responsibilities

for i=l:k
C\_ o\ % s HEN A\
p(:,i)=alphas(i).*mvnpdf(x,mu(i,:),squeeze(S(i,:,:))); CSE 20112 2010W
end 100 N
p=p./repmat((sum(p,2)),1,k); L Scte. ...:. .
%update parameters Il S
L )
for i=l:k 20
Nk=sum(p(:,i)); % 20 40 60 80 100
mu(i :):p(: i)'*x/Nk; Assignment grade (%)
dev=x-repmat(mu(i,:),N,1);
S(i,:,:)=(repmat(p(:,i),1,D).*dev) *dev/Nk;
alphas(i)=Nk/N;
end
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Old Faithful Example
e

2 .o 2 .o 2
4B S5
0 I i 0 LS e R 0
= O SO wge. T
é ) .°~ ° .o~
g -2 o‘. -2 o‘. -2
g_ -2 0 @ 2 -2 0 v 2 -2 0 (c) 2
o
"5 2 2 .
L =20 °.o°.
c ° 'o.&
O . -
: O
e 0 0 e
- o O
. Io‘
-2 o &€
-2 0 (d) 2 =2 0 (e) 2 -2 0 (f) 2

Duration of eruption (min)

XQR,IS ' CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition J. Elder
UNTVERSITY



Face Detection Example: 2 Components

_ 0.4999  0.5001  Prior Each component is still assumed to
have diagonal covariance.
Mean
The face model and non-face
model have divided the data into
Face Model _ two clusters. In each case, these
Parameters Standard clusters have roughly equal
anadr .
deviation weights.
: ' The primary thing that these seem
- 0.4675 0.5325 Prior to have captured is the
photometric (luminance) variation.
Mean
Note that the standard deviations
Non-Face have become smaller than for the
Model single Gaussian model as any
Parameters W. Standard given data point is likely to be
deviation close to one mean or the other.
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Results for MOG 2 Model

Performance improves
relative to a single
Gaussian model,
although it is not a
dramatic improvement.

T MOG 2
0.3 —  Diagonal We have a better
Unif I
0.2} nirerm description of the data
0.1 likelihood.
% 0.2 0.4 0.6 0.8 i

YORK ' Pr(False Alarm)
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MOG 5 Components

m Probability & Bayesian Inference

0.0988 0.1925 0.2062 0.2275 0.1575 Prior

Mean
Face Model _ ,
Parameters \
: Standard
' A deviation
0.1737 0.2250 0.1950 0.2200 0.1863 Prior
Mean
Non-Face
Model
Parameters
Standard
deviation
uYNQEB.IS ' J. Elder




MOG 10 Components

“ Probability & Bayesian Inference

0.0075 0.1425 0.1437 0.0988 0.1038 0.1187 0.1638 0.1175 0.1038 0.0000

0.1137 0.0688 0.0763 0.0800  0.1338 0.1063 0.1063 0.1263  0.0900 0.0988

YO IR{“Ig ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder
UNTVERSITY

UNIVE
UunNiIVv



Results for Mog 10 Model

Performance improves

1 [ [ J
slightly more,
0.9 .
particularly at low false
0.8
alarm rates.
0.7
= 06
==
a 05
0.4} — MOG 10
o5 —— MOG 2
? — Diagonal
0.2% .
Uniform
0.1}
0 r r r r r
0 0.2 0.4 0.6 0.8 1
Pr(False Alarm)
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Background Subtraction
s ieboemieree

Test Image Desired Segmentation

GOAL : (i) Learn background model (ii) use this to segment regions
where the background has been occluded

N IV
NI VE

YO RI{é ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder



What if the scene isn’t statice

Gaussian is no longer a good
fit to the data.

Not obvious exactly what
probability model would fit
better.
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Background Mixture Model
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Background Subtraction Example
T I 7 Py

e)
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